Entrer un problème...
Algèbre linéaire Exemples
(2AT)-1=[4534]
Étape 1
Nullity is the dimension of the null space, which is the same as the number of free variables in the system after row reducing. The free variables are the columns without pivot positions.
Étape 2
Étape 2.1
Multiply each element of R1 by 14 to make the entry at 1,1 a 1.
Étape 2.1.1
Multiply each element of R1 by 14 to make the entry at 1,1 a 1.
[445434]
Étape 2.1.2
Simplifiez R1.
[15434]
[15434]
Étape 2.2
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
Étape 2.2.1
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
[1543-3⋅14-3(54)]
Étape 2.2.2
Simplifiez R2.
[154014]
[154014]
Étape 2.3
Multiply each element of R2 by 4 to make the entry at 2,2 a 1.
Étape 2.3.1
Multiply each element of R2 by 4 to make the entry at 2,2 a 1.
[1544⋅04(14)]
Étape 2.3.2
Simplifiez R2.
[15401]
[15401]
Étape 2.4
Perform the row operation R1=R1-54R2 to make the entry at 1,2 a 0.
Étape 2.4.1
Perform the row operation R1=R1-54R2 to make the entry at 1,2 a 0.
[1-54⋅054-54⋅101]
Étape 2.4.2
Simplifiez R1.
[1001]
[1001]
[1001]
Étape 3
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11 and a22
Pivot Columns: 1 and 2
Étape 4
The nullity is the number of columns without a pivot position in the row reduced matrix.
0